• Students
  • Faculty & Staff
  • Visitor
  • 中文
  • search
  • Home
  • About
  • Admission
  • Research
  • News & Events
  • Schools
Home About Admission Research News & Events Schools Students Faculty & Staff Visitor 中文
search
Severi inequality for varieties of maximal Albanese dimension
Date:2016-10-26 

Speaker:ZHANG Tong,Durham University


Time:2016-10-28, 16:00-17:30

Place:Room 1518, School of Mathematical Sciences 

Detail:  The so-called Severi inequality for complex surfaces of maximal Albanese dimension dates back to a paper of Severi himself in 1932, in which a gap was found afterwards. It is Pardini who finally gave a complete proof based on the covering trick and the slope inequality of Xiao. In 2009, Mendes Lopes and Pardini proposed a question about generalizing the classical Severi inequality to higher dimensions. In this talk, I will first introduce the classical Severi inequality and explain the above two ingredients in Pardini's proof. Then I will talk about a characteristic p>0 version of the Severi inequality which, a bit unexpectedly, gives a way to the Severi inequality in arbitrary dimension. 

Organizer: School of Mathematical Sciences
Quick Links
Hotline
Campus View
Dictionary
Video Course
Library
Services
Campus Areas Maps
On Campus Societies
Dining Centers
Sports Center
Hospital
Join Us
Join Us
Teacher Recruitment

Address: University of Science and Technology of China,
No.96, JinZhai Road Baohe District, Hefei, Anhui, 230026, P.R.China.

E-mail: OIC@ustc.tsg211.com

Copyright © 2013 University of Science and Technology of China.